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Let/I::)=2:/"a,::' and Klz)=2:/"h,z' be formal power series for which the
quantities a, + la, I /07 and (h)h" I )/(ada" I) have a prescribed asymptotic
behaviour as j -> 'Jj. We obtain the asymptotic behaviour as 1->(£ of the
(1- .1', r, .1'), I, r, .I' E N, Hermite Pade approximant to (f, K) and the associated
determinants. ,j' 1995 Academic Press. Inc.

I. INTRODUCTION

Given a vector (fJ' "', '/;,,) of formal power series, a vector of rational
functions (QI"/Q,,, "', Q","/Q/) can be defined in a natural way such that
each component Q}"/Q,, interpolates.l; at the origin with a degree as high
as possible. AIl components in the vector (QIIl/Q", ..., Q",')QIl) have a
common denominator polynomial Q". Although the definition is straight­
forward, it is difficult to make any meaningful statements about properties
like uniqueness or convergence of these simultaneous rational approximants
without more special assumptions. In special cases, like vectors of exponen­
tials, binomial functions, logarithms and hypergeometric functions (cf.
[He], [Co], [Ja], [deBr], [deBrDrLu]), a lot is known and the theory
is fairly weIl developed, especiaIly in the case of exponential functions.

Since in the case of only one function f = fl to be approximated,
i.e. m = I, the definition of simultaneous rational (Hermite-Pade) approx­
imants coincides with that of Pade approximants, it could be expected
that positive results are obtainable for a vector of functions whose Pade
approximants are weIl understood. Such a class is the set of formal power
series whose Maclaurin series coefficients satisfy a certain "smoothness"
condition. D. S. Lubinsky proved (cf. [Lu]) that if f( z) = Lr~ 0 (liZ) and
lim} -> J. (a} + I aj . I )/a; = q, then with mild restrictions on the asymptotic
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behaviour of the ratio aj+laj_l/a] in the case when q is a root of unity,
all rows of the Pade table of f(::) converge locally uniformly to f in C.
He also obtained (cf. [Lu J) the asymptotics of the associated Toeplitz
determinants.

In this paper, we shall consider the convergence of certain sequences of
simultaneous rational approximants to a pair of formal power series (f, g)

where the Maclaurin series coefficients off and g satisfy certain smoothness
conditions. In order to state the results, we need to introduce some
notation and a definition.

Notatiun. The set of all polynomials of degree ~n, n EN, is denoted by
[[II' If Po' PI' ... , P'" is an arbitrary set of non-negative integers, we call

p:= (Po, PI' ... , Pili) E N'" + I

a multi-index, and define

a:=po+PI+ .,. +P""

With this notation, we may formulate the simultaneous rational
(Hermite-Pade) approximants for a pair of formal power series U, g).

Given any P=(Po,p"P2)EN 3
, we seek polynomials QE[[" I>I!\{O}

and PiE [[" Pr' j= I, 2, such that

UQ - PI )(::) = 0(::"+ I)

(gQ - P 2 )(:) = 0(:"'+ I)

as :: --> 0,

as : --> O.
( 1.1 )

It is well known that a non-trivial solution to ( 1.1 ) exists with Q 1= o.

DEFINITION 1.1. The vector (P,/Q, P2 /Q) of rational functions is called
a simultaneous ratiunal (or Hermite-Pade) approximant to the vector of
functions U, g).

Let D := DU, g; Po, PI' P2) be the determinant defined by

a" 1'1 a"'_I'I_ J apo ' PI + I

a,., PI + I a" PI (lPo-1'1+2

D :=det a,., .\ a,., (/ Po (1.2)

b,., I''!. b,.,.p,_, bpI! P2"T 1

h,., .. \ h,., 2 bpI!
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It is known (cf. [deBr]) that the approximant (PJ/Q, P 2 /Q) to (f,g)
defined in (1.1 ) is unique up to normalization, provided

(1.3 )

Moreover, the normalized denominator polynomial Q(z), with Q(O) = 1, is
given by

Z ~2 ~" 1'0

(1"-1'1 + I ll" 1'1 ll,,_ 1'1- 1 lll'o-I'l + 1

I
Q(z) =-det a" a" 1 a,,_2 al'o (1.4 )

D
b" p:. + I b" -P2 b" 1'2- 1 hpO - P2 + I

b" b,,_ 1 b" - 2 bl'O

For an introduction to Hermite-Pade approximation, see [ApSt], [deBr].
In order to derive the maximum benefit from the identities associated

with the determinants defined in (1.2) and (1.4), it becomes necessary to
introduce a fourth parameter in the description of these determinants.
Letting

( 1.5)

the determinant D = D( Po' PI' P2) = DU, 1+ k; r, s) defined by (1.2)
becomes

a, ll, 1 ll'-r-s+1

a'+1 a, a'-r-s+2

D=det a'+r _I a'+r - 2 a,_s (1.6 )

b'+k b'+k_ J b'+k--r-s+ 1

b'+k+s-l b'+k+s-2 b'+k --I'

This determinant is well defined for I, r, SEN, I sufficiently large, and k E J..
In the Hermite-Pade case, of course, there are only three independent
parameters, namely I, r, and s. It is easily seen from (1.5) that for
Hermite-Pade,

Po =1- S and k = r-s. ( 1.7)
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We observe that k = r - s is the number of rows of "a" coefficients minus
the number of rows of "b" coefficients. With the parameters introduced in
( 1.5), the normalized denominator polynomial Q( z) = Q( I, 1+ k; r, s; z)
given by (1.4) can be written

a,+ ] a,

..,..2

a, I

_r +s

a, ,. .. s+ I

a,_ .(1.8)

h'+k -,. s+ 1

We now state our first main result.

THEOREM 1.1. LeI f(z):= L:7~o a)z) and g(z):= L::~o hpi he flmnal
power series with aJl) #- 0 for j large enough. Assume that

\
. ai+ la)_ I
1m , = q,

I~ > a;

and

I· (bJ ) 1:'( aJ ) ,1m -- -- =1..
i~cf_ hj +] / aJ+1

Suppose, in addilion, Ihat I.q #- 0, q is not a root of unity and A#- 1.

( 1.9)

(l.10)

(a) For l,r,sEN, kEE and D=D(l,I+k;r,s) defined hy (1.6), we
have

\
. D(l, I +k; r, .1')
Im------

'~cf. a;b';+k_r

r -1 s - I

= Il (l-q'j' j Il (l-qlj' ill Il (l_;"-Iqk+n J).
i~1 j~1 i~1 ,,~I

(1.11)

(b) For any non-negative integer n, leI B,,(u) he the polynomial defined
hy the recurrence relation

n = 1, 2. .... (1.12)
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Let r, .I' ?' 0 he integers and k any fixed integer. Define the polynomial

W... ,.k(U) hy

W,.tl.k(U) := B,(u), r?, 0, any fixed k,

W,.s.k(U) = W,., u(u)-u). Iqk+' IW,.s I.k(Uq I),

Then

(1.13)

r ?' 0, .\ ?' 1.

(1.14 )

s?, 0, k fixed. (1.15 )

Further, il" Q(::) = Q( I, 1+ k; r, .1'; ::) is the po(vnomial de.fi"ned hy (1.8), 1\'e

have

lim QU, 1+ k; r, .1'; u(/,/a,+ I) = W ... ,-.k(U),
1--.. 'J

(1.16 )

locally unifimn(v in C

Rell/arks. (I) Theorem 1.1 is a generalization of the result proved by
D. S. Lubinsky (see [Lu, Th. 1.1, p. 308]) for a formal power series
.!(::) = I./=o (/j:-/' where limj~f((/j+laj I)!a;=q, and q is not a root of
unity. Specifically, putting .I' =°in Theorem 1.1 yields Lubinsky's results.

(2) It is known (cf. [LuSa]) that B) -u) is a Rogers-Szego polyno­
mial. When q is not a root of unity, it has been shown (see [LuSa J) that

"(I-q")(I-q" 1)···(I_q,,-rI'i)
B,,(-u)= I 0 _ uJ

i = tl ( I - q)( I - (r) ... ( I - qJ)

(3) It has been mentioned that the polynomial Q(l, 1+ k; r, .1'; ::) is
the normalized denominator polynomial in the Hermite-Pade approximant
for (j~ g) corresponding to the multi-index (/ -.I', r,.I') only when the
parameter k is equal to r - s. It seems inappropriate therefore that k should
appear as a parameter in the limit polynomials W... ,.. k(U), However, if we
study the recurrence relation (1.14), we see that when k = r - .1', the polyno­
mial on the right hand side of (1.14), viz. W... s _ I.k' is not the limit polyno­
mial of a Hermite~Pade denominator since r - (.I' - I) = k + I. A simple
example, say r = I, .I' = 2 illustrates the necessity of retaining k as an
independent parameter in the recurrence relation. We have from (1.14)
with r = I, .I' = 2,

(1.17)

Then, with k fixed, k = r - .I' = I - 2 = - I, we see from ( 1.17) that in order
to find WI.2._I(U), we must be able to evaluate WI.I .. I(U) which is not the
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limit of the Hermite-Pade denominator for r = 1. s = 1 (which would be
WI. I.o(u)).

(4) We have observed that putting s = 0 in (1.1 6) and using (1.1 3)
for the Hermite-Pade case, k = r - s = r, we obtain

lim Q(/, 1+ k; r, 0; ua,/a/+ I) = Wr.o.Au) = BAu).
t_ f,

It is an immediate consequence of assumptions (1.9) and (1.10) that the
Maclaurin series coefficients of g(::) satisfy the smoothness condition

It follows that for the Hermite-Pade case with r = 0 and k = r - s = - s,
that

lim Q(/, 1- s; 0, s; uh,,/h,,+ I) = B,( u).
/-1

Moreover (see Lemma 2.1), we have as 1-> 00,

From (1.18) and (1.19), we deduce that

lim Q(/, 1- s; 0, s; uAq'a,/a,+ I) = B,(u),
/-+ f

or

lim Q(/, l-s; 0, s~ ua,/u,+ 1) == B,JUA -I q - >r),
1--+ f.

(1.18)

(1.19)

which is just (1.16) and (1.15) with k = -so

We have remarked that with assumptions (1.9) and (1.10), the coef­
ficients of the formal power series for.f and g satisfy the same smoothness
condition, which implies thatf and g have the same radius of convergence.
When Iql> 1, f(::) and g(::) have zero radius of convergence, while when
jql < I, f and g are entire functions of order zero. When Iql = I, f and g
may have zero, finite or infinite radius of convergence.

Unfortunately, the most common value of q in (1.9) is q = 1; in this case
the asymptotic (1.11) is of little use. In addition, A defined in (1.10) may
have the value 1. However, with extra conditions on the coefficients of f
and g, we can extend the results of Theorem 1.1 to the case when q is a
root of unity and/or A= I.
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THEOREM 1.2. Let f(z)=L/~Oajzj and g(Z)=L/:objz' be f(}rmal
power series with ajbi t= 0 for j large enough. Let

(1.20 )

and

(1.21 )

Assume that q, and A, each have an asymptotic expansion in the .following
sense: There exist complex numbers {cd :~ I and {dk } :~ I with C I d l '" 0 and
there exist q and Ie, qle '" 0, such that /()/. each positive integer N,

and

as I ....... CYJ,

as I ....... oc,

(1.22 )

(1.23 )

Suppose that q is a root of unity and t is the smallest positive integer ./(Jr
which ql = I. Then ij'D = D( I, 1+ k; r, s) is defined by ( 1.6), we have that for

A'" I or, ./01' A= I,

for any integer H', (1.24)

then

Furthermore, the limit relation ( 1.6) remains valid.

(1.25)

In Section 2, our main aim is the proof of Theorem 1.1. We precede this
proof by the statements and proofs of two subsidiary lemmas. Section 3
contains the proof of Theorem 1.2 in addition to statements and proofs of
relevant lemmas.

2. LEMMAS AND THE PROOF OF THEOREM 1.1

LEMMA 2.1. For any positive integer I, let

(2.1 )
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and

Then

315

(2.2)

(
a, )'

1 a,_ I '
t > 0, (2.3)

and

Further,

t<O. (2.4 )

t >0, (2.5)

and

If; in addition, we have

lim lJ, = lJ
I-f

and

lim A, = ;.,
I---r..

then for any integer t,

and

Proof For any positive integers I and t,

r - I

a,+,/(I, = TI (I'T'" + I /a,+",.
1l1=O

t<O. (2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11 )
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Now, from (2.1), for In ~ 0,
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=ql+mlJl+-m ,(l'+m ,/a 1+ m '2

It follows from (2.11) and (2.12) that for t > 0,

which proves (2.3). Next, for I>°and t < 0, we have

-I

a,+,/a,= f1 a, ",la, ",+,.
lit = 1

From (2.1), for m ~ l.

From (2.13) and (2.14), we deduce that for I> 0, t < 0,

(2.12)

(2.13 )

(2.14)

which establishes (2.4). The limit (2.9) follows immediately from (2.7) and
(2.3) for t > 0, while for t < 0, putting t = -.I' so that .I' > 0, we have from
(2.4) that

Therefore, using (2.7), we obtain, with t= -.I',

I. (['.+1/( a.,)1 1+1m --/ -- =q
,~". a,,:' a, .. ,

. +(,\, Il = q'LI -ll/1

Hence (2.9) holds for all integers t, t # 0, while for t = 0, the statement is
trivially true. To prove (2.5), we observe that for I, t > 0,

(

h'+llh,= IT h'+mlh'+1ll \,
nl= I

(2.15)
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while, from (2.2), for m ~ 1,

It follows from (2.15) and (2.16) that for I, t > 0,

t

h 'h 1 11 1 • 1 n '
'+1/ ,=A, A'+I'''I''+I 1 (/'+/1'/(/'+,/1_1

H/= 1

I' I ~ I I

A, + I ... I., + 1 _ 1(/, + Ii (/ ,.

This proves (2.5). Further, for I> 0 and f < 0, we have

- I

h'+I/h,= n h, mib, ",+1'
11/= I

Also, from (2.2), for m ~ I,

h'-m/bl_ 111+1 =;~J-J1IaJ m/al-m+J'

Therefore, from (2.17) and (2.18), for I> 0, f < 0,

-I

b'+I/b,= n A'_II,a'_m/a, m+ I

",= 1
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(2.16)

(2.17)

(2.18)

and we have shown that (2.6) holds. The limit (2.10) follows from (2.5),
(2.6), and (2.7). I

LEMMA 2.2. Let I, rand s be positive integers, I~ s, and k any integer.
Let D = D( I, 1+ k; r, s) be (kfilled for r + s > 0 hy

D(/, 1+ k; r, .1') := det

11'11i Ie

DU, I +k; 0, 0) := 1.

s + I

. (2.19)

(2.20)
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D(l, 1+ k; r, -1) := D(l, 1+ k; r - 1, 0),

D(I, 1+ k; - 1, s) := D(l, I + k + I; 0, s - 1),

r~ I, (2.21 )

(2.22)

Then, for r,.I' ~ 0, r + s > I, lve have

D(l, 1+ k; r, s) D(I, 1+ k - 1; r - 1, s - 1)

= D(l, 1+ k - I; r - I, s) D(I, 1+ k; r, S - 1)

- D(I + 1,1 +k; r - 1, s) D(I- 1, 1+ k - 1; r, s - 1). (2.23)

Further, it' Q(l, 1+ k; r, s; :) is the polynomial defIned by (1.8) and
D(I,I+k;r,s), D(/,I+k;r,s-l) and D(I-l,l+k-l;r,s-l) are non­
zero, then

Q(l, 1+ k; r,.I';:) = Q(l, 1+ k; r, S - 1;:) - :Q(l- 1, 1+ k - 1; r, S - 1; z) X,

(2.24)

where

X
.__ D(I- 1, 1+ k - 1; r, S - I ) D(I + I, 1+ k + I; r, s)

(2.25)
. D(l,I+k;r,s-l)D(l,I+k;r,s) .

Proof For r ~ 1, S ~ I, (2.23) follows from a special case of Sylvester's
identity (cr. [BaGr, p. 23]) which states the following: Let C be a k x k
matrix and let I ~ p, q, m, n ~ k. Let Cm;p( Cm • lI ; P.") denote the matrix
obtained from C by deleting the mth row and pth column (respectively, the
mth and nth rows and pth and qth columns). Then

(det C)(det Cl,k;l,k) = (det CI;I )(det Ck;k) - (det Cl,kHdet Ck;I)' (2.26)

Applying the identity (2.26) to the (r+s)x(r+s) matrix of which
D( I, 1+k; r, s) is the determinant, we obtain (2.23). It remains to show that
(2.23) holds for r = 0, S ~ 2 and for r ~ 2, s = 0. First, for r = 0, S ~ 2, the left
hand side of (2.23) is

D(l, 1+ k; 0, s) D(l, 1+ k - 1; - 1, s - I )

= D(I, 1+ k; 0, s) D(I, 1+ k; 0, s - 2),



SIMULTANEOUS RATIONAL APPROXIMANTS

by definition (2.22). The right hand side of (2.23) is

D(I, 1+ k; - 1, s) D(f, 1+ k; 0, s - 1)

- D(I + 1, 1+ k; - 1, s) D({ - 1, I+ k - 1; 0, s - 1)

= D(f, 1+ k; 0, s - I) D({, 1+ k; 0, s - I )

- D({ + 1, 1+ k + 1; 0, .I' - 1) D(! - 1, 1+ k - 1; 0, .I' - I ),
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by (2.22). Therefore, for r = 0, .I' ~ 2, (2.23) holds since it is just the identity
(2.26) applied to the matrix of which D( J, J+ k; 0, .1') is the determinant.
Similarly, using (2.21 ), we can check that (2.23) holds for r ~ 2, .I' = O.

In order to prove (2.24), let V(:) = V( J, J+ k; r, s; :) denote the polyno­
mial defined by

V( J, 1+ k; r, .1'; :)

.... t"+s

:=det (J/+,- -:2

h/+ k . I -1'+ I

. (2.27)

Clearly, from (1.8) and (2.27), we have

V(f, 1+ k; r, s;:) = D(!, 1+ k; r, .1') Q(!, I+k; r,.I'; :). (2.28)

Applying the identity (2.26) to (2.27), we obtain for r ~ 0, .I' ~ 1,

V(!, 1+ k; r, .1';:) D({, 1+ k; r, .I' - 1)

= V(f,I+k;r,.I'-l;:)D(I,I+k;r,s)

- : V( J- 1, J+ k - 1; r, S - I; :) D( I + I, J+ k + I; r, .1'). (2.29)

Dividing (2.29) by D(l, J+ k; r, .1') D(l, 1+ k; r, .I' - I ) and using (2.28) yields
(2.24) and (2.25). I

We shall now prove Theorem I.I using induction on (r+.I'), r, SE Nand
the recursion relation (2.23). An alternative proof of (a) that avoids induc­
tion and recursion has been pointed out by one of the referees. In brief out­
line, if one factors the first element of each row of D in (1.6), followed by
a suitable factoring of each column, one can show that D is asymptotically
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equal to some factors times the Vandermonde determinant of I, Ijq,
1/q2, ..., l/q' I, }.jt/, Ajt/ + I, ... , A/qk +, 1 and (1.11) can be deduced.

Proof 4 Theorem 1.1. (a) For r = 0, s = 0, (1.11) holds since
D(l, 1+ k; 0, 0) = 1. Further, from (1.6), we have

D(l,/+k; 1,0)=a, and D(l,I+k;O,I)=b/+b

so that (1.11) is true for r+s:(l. Now assume that (1.11) holds for all
non-negative integers rand s with r +s:( m. We shaH prove that (1.11) is
true for (r + I, s) and (r, s + I) where r + s = m. From (2.23), we have

D( I, 1+ k; r + I, s) D( I, 1+ k - I; r, s - I )

= D(l, 1+ k - I; r, s) D(l, 1+k; r + I, s - I)

- D(l + I, 1+ k; r, s) D(l- I, 1+ k - I; r + I, s - I). (2.30)

Applying the inductive hypothesis to the determinants of the matrices of
order :( m in (2.30), we obtain that for q not a root of unity, A#- 1, },,/ #- 0,
as 1-+ 00

\' - 1 r

D(l, 1+ k; r + I, s) = a; + 1b; + k _, _1 n (I - qi)' - i n (I _ qi), T I -- j

j~ I j~ I

r + J s·- I

X n (I-A Iqk+-'-l~i) n n (I-A - Iqk+n- i )
i~1 i~ln=1

where

x (I - Y)( I + 0(1 )), (2.31 )

y:=(a'+I)'( b'+k I )'(~)'+I (b/+ k , _2),-1 (2.32)
a, b'+k_' _I ([, b'+k -,-1

From (2.32), (2.9), and (2.10), we have as 1-+ 00

Y=q' (~)' (qk-, ~)-'(~)'+l
(['_I A. ([/-1 a,

(
A a )S ~ 1

X k _ , _ 1~ (1 + 0(1 ) )
q a/

(2.33 )
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Therefore, from (2.33), as 1->00,

r r + I .,,"- 1n (I_A-lqk+'~I~J) n n (I-A -lqk+f1- J)(l_ Y)
I~l 1~ln=1

r+J r+1 s-I

= n (l-;.~ lqk+'-J) n n (l_}.-lqk+n-j)(l +0(1))
j~l j~1 f1~1

r + 1 s

= n n (1-A,lqk+f1- J)(1 +0(1)).
j= J It= I

Substituting (2.34) into (2.31), we have as 1-> w,

321

(2.34)

.,'-1

D(II+k'r+l s)=ar+1b'. n(l-qJ)r+l In(I-q.l),~j, , , I I+k. -'-r -" I
I~l 1=\

r+ 1 s

x n n (1 - ;. - Jqk + fI - J)( 1+ o( 1)),
j= 1 1l= I

which establishes (Ul) for (r + 1, .1'). A similar calculation yields (LII) for
(r, .I' + I). Therefore, by induction, (1.11) holds for all non-negative integers
rand .1', and we have completed the proof of (a).

(b) We again use induction to prove (U5). First, from (l.l3) with
r=O, we have (with .1'=0),

(2.35 )

by (l.l2), so that (l.l5) holds for .I' = 0. Also, from (1.14), for any fixed
integer k and r = 0, we have (with .I' = 1)

by (2.35). Further, from (l.l2),

(2.37 )

so that (2.36) and (2.37) establish (U5) for .1'= 1. Assume as an inductive
hypothesis that (1.15) holds for all integers .I' ~ m - I, mEN. Then by
( 1.14) with .I' = 111,

WO.m.k(u) = WO.m_ u(u) - UA. -lqk + m- 1WO.m- U(uq ~ 1)

=Bm~I(UA-lqk)_UA. -lqkqm-IBm~,l(UA-lqkq-l)

= Bm(UA -lqk),
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where we have used the inductive hypothesis and (1.12). Therefore (1.15)
holds for .I' = m and by induction, we have proved (1.15) for all .I' ~ 0 and
any fixed k E Z.

In order to prove (1.16), we use (2.24) and (2.25) together with (1.11).
From (2.25) and (1.11) we have as I ....... oc,

X=(a, 1~'+I)I'(b'+k-"2Ib'+k-"+I)S-I(b~+k1'+1)(1+0(1)). (2.38)
a, b'+k ,. I+k I'

Now, from (2.9) and (2.10), for any fixed integers k and r,

I
. a,
1m

I_I
(2.39)

and

1· b'+k 1'+1 )-1 k-r+1 I' a,1m =A q 1m --.
'~f b'+k I' '~f a,_ I

Therefore, from (2.38), (2.39), and (2.40), we obtain as I ....... oc,

X=q'q' I). lqk ,+I(a,/a,_d(1+o(I))

= A- Iqk +S(atla, 1)( I + 0(1 )).

Substituting for X from (2.41) into (2.24) yields as I ....... oc,

(2.40)

(2.41 )

Q(l, I+k; r,.I'; ::)= Q(l, I+k; r, .1'-1; ::)-::Jc -l qk+'a,/a'_1

x Q(l- L I+k-I; r, .1'-1; ::)(1 +0(1)). (2.42)

Putting:: = uatla , + 1 in (2.42) and observing that then ::ai/a'_1 = uq,-J, we
obtain as I ....... CD,

Q(l, 1+ k; r,.I'; uat!a, + I)

= Q(l, I+k; r, s-I; ua,/a,+ I)

-). - Iqk+ s
- 1uQ(l- 1, 1+ k - 1; r, S - I; q -Iuat!a,+ 1)( I + o(l)).

(2.43 )

Armed with (2.43), we now prove (1.16) by induction on (r+s). From
definition (1.8),

Q(l, 1+ k; 0, 0; uatla, + I) = I. (2.44)
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Also from (1.8), with r = 1, s = 0, we have
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1 l IQ(l, 1+k; 1,0; uar/a, + I) = - det
a, a,+ I

I
=- (a,-ua,) = l-u.

(I,

On the other hand, from (1.8) with r = 0, S = 1,

Q(l, 1+k; 0, I; uar/a,+ I)

(2.45)

I r I=--det
h'+k h'+k+l

a, h'+k+1=I-u-----
a,+ I h'+k

= I - u (~)) I qk + I (~) (l + o(l ))
a'+l (I, I

where we have used (2.9) and (2.10). Therefore,

as 1-> OC,

lim Q(/,I+k;O, l;uar/a'+I)=I-) I(/U
1----+·"/.

= Wo.u(u), (2.46)

by (2.36). Therefore, we see from (2.44), (2.45) and (2.46) that (1.16) holds
for r, S ~ 0, r + S ~ I. Assume as an inductive hypothesis that (1.16) holds
for all non-negative integers rand S with r + s~ 111 - 1, 111 EN. Then, with
r + S = fIl, we have from (2.43) and the inductive hypothesis that with k a
fixed integer, as 1-> w,

Q(l, 1+ k; r, .1'; uar/a, + 1)

= W
I

•
S

_ u(u)+O(l)-I. lqk+' lUW
I
.., U(uq-l)+o(1)

= W,..s.k(U) + o( I),

by the recurrence relation (1.14). Therefore, (1.16) is true for 1'+.1'=111 and
therefore by induction, we have proved (1.16) for all non-negative integers
r, .I' and k fixed, k E 7l. Observe that ( 1.16) holds uniformly for u in compact
subsets of C, since ql. # O. I
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3. ASYMPTOTICS WHEN q Is A ROOT OF UNITY AND/OR A= 1

We introduce an analogue for asymptotic series of the 0, 0, notation (cr.
[Lu, p. 310]). Given non-negative integers Sand T with S ~ T, and given
a sequence of complex numbers {e,} /= I' we write

if and only if there exist Cs . C,\'+ I' "'. erE C with

(3.1 )

T

e,= L Ck/~k +0(/ T)
k ~ ,\'

as I~ CXJ, (32)

LEMMA 3, I, Let I he a positive integer and let

(3.3)

(3.4 )

Assume that q I and A, each have a complete as.vmptotic expansion in the
sense that there exist complex numhers {Ck}:~ I' {dk}:~ I with

and there exist q and A, qA #- O. such that ie)r each positive integer N.

(3,5)

as I ~ ex). (3,6)

and

as I~ cx), (3,7)

With the notation in (3.1 ) and (32), and N an arhitrary positive integer;? 3,
we have the following:

(a) For any integer t,

and

as I~ CXJ.

as I~ (~.

(3.8)

(3,9)

(b) For any fixed positive integer j,

1- qf #-0 for I sufjiciently large, (3.10)
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and
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1-> oc. (3.11 )

(c) For any integer t with

we have

(3.12)

for I sufliciently large, (3.13)

and

Proof (a) From (3.6) we have as I --oc, t E J'. fixed,

(
C\ C2 C N ._"')

q,+,=q 1+-,-+-,--)0+ ... +, )\,+o(l+t) ,
+t (+t- (+t'

(3.14)

=q(l+(/+ ... +~:~+A,[2;N])

= (jl( 1+ A I [2; N]),

which proves (3.8). The proof of (3.9) follows the same procedure.

(bi For any fixed positive integer j, we have by (3.6), as 1-> oc,

Therefore,

. .(jCI )q{ = qJ 1+-,- + A,[2; N] . (3.15)

(3.16 )

which is non-zero even when q/ = 1 since C I *0 by (3.5). This establishes
(3.10). Also, from (3.6), as ,->oc,

, ,( frl fro )q{=qJ 1+-,-+ e-+AI[3; N] ,
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Therefore, as I ...... oc,
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(
q'jC )

= ± T (1 +A([I; N-2]).

Also, from (3.16),

(3.17)

Now

for qJ # I,

for qJ = I.
(3.18 )

(I-q!±,)/(l-q{)= I +(q!-q!±,)/(I-qf). (3.19)

From (3.17) and (3.18) it follows that

if qi# I
if qJ = I,

(3.20)

where N', N" depend on N. Since N is arbitrary, (3.11) follows immediately
from (3.19) and (3.20).

(c) For any tEl'., by (3.6) and (3.7), we have as I ...... x,

1 ) ,( tc) - £I, )= A q I + I + A 1[2; N] .

Therefore, as 1-> oc,

(3.211

and (3.13) follows even when ), <)q' = 1, since te) -d) #0 by (3.12). Next,

(3.23 )
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From (3.21), as I--+UJ,
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=(±} 'ql(tc,-d , )) 1 A [I· ]
[2 ( + , , N ).

Also, from (3.22), as 1--+212,

(3.24)

From (3.24) and (3.25) we deduce that as 1-+ x,

(3.25 )
for A I q'=1.

(1.,-1 q; - i.,±\ q;± I) = {A,[2; N]

(1-)" 'q;) A,[I;N]

and (3.14) follows from (3.23) and (3.26).

if A -lq'#I,

if Alq' = I,
(3.26)

Prool4 Theorem 1.2. We use induction on (r + s), recalling that rand
s are non-negative integers. From the definition (1.6) of D( I, 1+ k; r, s), we
see that D(l,I+k;O,O)=I; D(l,I+k; I,O)=a,; D(l,I+k;O,l)=h'+k.
Therefore, (1.25) holds for all non-negative integers rand s with r + s ~ I.
Assume as an inductive hypothesis that for all non-negative integers rand
S with r + s ~ m - I, m> I, and for an arbitrary N E N, as 1-+ x,,

r -- ) s >- I

D(l,I+k;r,s)=a~h;+k ,IT (l-qf)r-iIT (I-qf)'i
i~ I ,~ I

x IT f1 (1-),; I q;+11 i)(1 +A{[I; N]).
i= 1 n= I

(3.27)

Suppose now that r + s = m - I. Using the identity (2.23) together with the
inductive hypothesis (3.26), a straightforward calculation yields, as 1->212,

,. .\' 1

D(l,I+k;r+l,s)=a~+lh;+k r Ill(l-qj)'+' if1 (I-qf)' i
i-I i-I

r r+] 5-1

X IT (l-A{-lq;+'-i- 1 ) IT IT (I-A{ I q;+11 {)
i~ I i~ I II ~ I

x(I-Z)(1 +A{[I;N]), (3.28)
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where
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(3.29)

Observe that the division evident in (3.28) and (3.29) is justified because of
(3.10) and (3.13\. Now, by (2.3), (2.4), (2.5), and (2.6), we have

(a,+ I)r (a, _I)r+ I(b'+k-r-2)'\'-1 ( b'+k-r )S
a/ (// b'+k r-l b'+k_ r-.,

r-I
(3.30)

where we have used (3.8), (3.9) and the fact that (1 + A ,[ 2; N])' =
1 + A,[2; N]. Furthermore, each of the remaining terms in the product on
the right hand side of (3.29) is of the form I+A,[I;N], by (3.11) and
(3.14). Then from (3.29), (3.30) and the previous remark, we deduce that

Z=).,l q7+ SI (l+A,[I;N])

It follows from (3.28) and (3.31) that as 1-- 00,

as 1--00. (3.31 )

r .\' ,- I

D(I, 1+ k; r + I, s) = a; + I b; + k rill (I - qf)r + I / Il (l - qf)s-/
/-1 /-1

r + 1 s

x Il Il (l-A,-l q7+"-/)(I+A,[I;N]). (3.32)
/~ I ,,-1

A similar calculation shows that D(I, 1+ k; r, s + 1) has a complete
asymptotic expansion of the required form and therefore by induction we
have proved (1.25) for all r, s ~ 0 and k E 71. Finally, the limit relation
(1.16) follows from (1.25) and the proofof(I.16) in Theorem l.l(b). I
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