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Let fiz)=3/ ,a,=/ and g(z)=3 ", bz’ be formal power series for which the
quantities @, ,ya;, fa; and (b,/b,, )/(a,fa;, ) have a prescribed asymptotic
behaviour as j— . We obtain the asymptotic behaviour as {— « of the
({—s,r 5), L r,seN, Hermite Padé approximant to (/f,g) and the associated

determinants. 1995 Academic Press. Inc.

1. INTRODUCTION

Given a vector (f), ..., f,,) of formal power series, a vector of rational
functions (Q,,,/Q,. - 0,../0,) can be defined in a natural way such that
each component @,,/Q, interpolates f; at the origin with a degree as high
as possible. All components in the vector (Q,,/0,. ... O,../Q,) have a
common denominator polynomial Q,. Although the definition is straight-
forward, it is difficult to make any meaningful statements about properties
like uniqueness or convergence of these simultaneous rational approximants
without more special assumptions. In special cases, like vectors of exponen-
tials, binomial functions, logarithms and hypergeometric functions (cf.
[He], [Co], [Ja], [deBr], [deBrDrLu]), a lot is known and the theory
is fairly well developed, especially in the case of exponential functions.

Since in the case of only one function f=/f; to be approximated,
ie. m=1, the definition of simultaneous rational (Hermite—Padé) approx-
imants coincides with that of Padé approximants, it could be expected
that positive results are obtainable for a vector of functions whose Padé
approximants are well understood. Such a class is the set of formal power
series whose Maclaurin series coefficients satisfy a certain “smoothness”
condition. D. S. Lubinsky proved (cf. [Lu]) that if f{z)=3" ,«;z/ and
lim,, , (a;, a4, \)/a; =g, then with mild restrictions on the asymptotic
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behaviour of the ratio a,+,q,-,1/a_f in the case when ¢ is a root of unity,
all rows of the Padé table of f(z) converge locally uniformly to fin C.
He also obtained (cf. [Lu]) the asymptotics of the associated Toeplitz
determinants.

In this paper, we shall consider the convergence of certain sequences of
simultaneous rational approximants to a pair of formal power series (f, g)
where the Maclaurin series coeflicients of f and g satisfy certain smoothness
conditions. In order to state the results, we need to introduce some
notation and a definition.

Notation. The set of all polynomials of degree <n, ne N, is denoted by
1, . It py, pi. ... p,, 1s an arbitrary set of non-negative integers, we call

P = (Pos Prs s Pr) ENT'HY

a multi-index, and define
U::p(}+/)l + - +pm'

With this notation, we may formulate the simultaneous rational
(Hermite-Padé) approximants for a pair of formal power series ( f, g).

Given any p=1(p,.p,.p,)eN’ we seek polynomials Qell, ,\{0}
and Pefl, ,.j=1, 2 such that

(fO-P)z)=0(=""") as -0,

(1.1)
(20— P)z)=0(z""") as -0,

It is well known that a non-trivial solution to (1.1) exists with Q #0.

DermNiTioN 1.1. The vector (P /Q, P,/Q) of rational functions is called
a simultaneous rational (or Hermite—Padé) approximant to the vector of
functions (/. g).

Let D:=D(f, g po.p1.p2) be the determinant defined by

—
r d,. ” an—/i,— 1 (l/,(" pr+1
a, m+1 Uy " o ap(, -2
D :=det d, da,. - d, . (1.2)
ba P bn | 1)/)“' prt !l
L hrl—l hﬂ 2 b/;” J
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It is known (cf. [deBr]) that the approximant (P,/Q, P,/Q) to ([.g)
defined in (1.1) is unique up to normalization, provided

D :=D(f, & po. p1, p2) #0. (1.3)

Moreover, the normalized denominator polynomial Q(z), with Q(0) =1, is
given by

B I z 22 o PRI
Qo p+1 gy oo p py—py+1
1 : :
Q=)= D det a, do. Ay .o da,, (1.4)
b” rrtl b, -7 b, P21 b/’u —pytl
| b, b,_, b, 5 P

For an introduction to Hermite-Padé approximation, see [ ApSt], [deBr].

In order to derive the maximum benefit from the identities associated
with the determinants defined in (1.2) and (14), it becomes necessary to
introduce a fourth parameter in the description of these determinants.
Letting

Fi=py; $I=p,; l'=0—p,; I+k.=0~p,, {(1.5)
the determinant D= D(pg, p,, p2)=D{L1+k;r.5) defined by (12)
becomes
B a4, ay Ay si1
a4 a, A v 542
D =det dryr dyyy .2 a;_, (1.6)
bl+k bl+k~l b1+k«—r~.\v+1
L. hl+k+x~l b1+k+.r/2 bl+k~—r -

This determinant is well defined for /, r, s e N, / sufficiently large, and ke Z.
In the Hermite-Padé case, of course, there are only three independent
parameters, namely /, r, and s. It is ecasily seen from (1.5} that for
Hermite-Padé,

k=r—s. (1.7)

po=I1—s and
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We observe that k =r—s 1s the number of rows of “a” coefficients minus
the number of rows of “b” coefficients. With the parameters introduced in
(1.5), the normalized denominator polynomial Q(z)=Q(/ {+k;r, s;2)
given by (1.4) can be written

B 1 - L2 . -
i a, a; dj . ros+1
1 : : : .
Q(:)=5det diyr Aryro Ajyr-2 a, (1.8
b1+k+1 bl+k bl+k7 1 bl+k -r s+ 1
_hl+k+x b1+k+.v— 1 bl+k+.\— 2 bl+k—r -]

We now state our first main result.

TueoreM 1.1 Ler f(z):=X7 ga,z/ and g(z):=3X7 b=/ be formal

power series with a;b, #0 for j large enough. Assume that

lim &%t g (19)
j— (ljT

and

fim ( b, )f‘( 4 ):;.. (1.10)
J bj+l K aj

Suppose, in addition, that i.q #0, q is not a root of unity and 1 # 1.

(a} For Lr,seN, keZ and D= D(l, [+ Kk, r,s) defined by (1.6), we
have

. DU+, )
lim —————
= o ayb-;J—kf—r

s—1 13

r—1 s
=n (l_ql)v jn {l_q_l)xain H (l_i-flqki-n ;) (111)
j=1

J=1 Jf=1n=1

{(b) For any non-negative integer n, let B,(u) be the polynomial defined
by the recurrence relation

Bolu):=1, B, u):=B, ,(u)—uq" " 'B,_ ,(ug™"), n=1,2...(112)
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Let r,5s=20 be integers and k any fixed integer. Define the polynomial
W, u) by

W, oxlu) =B u), r=0, any fixed &, (1.13)
W =W, ) —ud '¢" "W g ), rz0, s=1.
(1.14)
Then
Wy olt)=B(ug"’ "), 520, k fixed. (1.15)

Further, if Q=)= QUL [+ k;r, s, z) is the polvnomial defined by (1.8), we
have

lim QU I+ k;r, siua;ja;, }y=W,  (u), (1.16)

/=

locally uniformiy in C.

Remarks. (1) Theorem 1.1 18 a generalization of the result proved by
D. S. Lubinsky (see [Lu, Th. 1.1, p. 308]) for a formal power series
Az)=%/qa;z', where lim, ., , (a;, a; )/aj=¢. and ¢ is not a root of
unity. Specifically, putting s =0 in Theorem 1.1 yields Lubinsky’s results.

(2) Ttis known (cf. { LuSa]) that B,( —u) is a Rogers-Szegd polyno-
mial. When ¢ is not a root of unity, it has been shown (see [ LuSa]) that

" (l_qn)(l__qn I)...(l_q”*l’j)
Bn_ = 2 ;
U= L T )

J

(3} It has been mentioned that the polynomial Q(/, 71+ 4k;r, 5;2) is
the normalized denominator polynomial in the Hermite—Padé approximant
for (f.g) corresponding to the multi-index (/-s,r, s) only when the
parameter & is equal to r — 5. It seems inappropriate therefore that & should
appear as a parameter in the limit polynomials W,  .(u). However, if we
study the recurrence relation (1.14), we see that when & = r — s, the polyno-
mial on the right hand side of (1.14), viz. W, ,_ | 4, is not the limit polyno-
mial of a Hermite-Padé denominator since r—{s—1)=4k+1. A simple
example, say r=1, s=2 illustrates the necessity of retaining k as an
independent parameter in the recurrence relation. We have from (1.14)
with r=1, s=2,

Wioduy=W, ) —ul g W lug ). (L.17)

Then, with & fixed, k=r—s=1-2= — 1, we see from (1.17) that in order
to find W, , _,(u), we must be able to evaluate W, | _ («) which is not the
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limit of the Hermite—Padé denominator for r=1, s=1 (which would be
Wi i ota)).

(4) We have observed that putting s=0 in (1.16) and using (1.13)
for the Hermite~Padé case, k =r — s =r, we obtain

hm QU I+k;r,0ua,ja;, )=W,, (u)=B,(u).

l— »

It is an immediate consequence of assumptions (1.9) and (1.10) that the
Maclaurin series coeflicients of g(z) satisfy the smoothness condition

tim bj+)b_/‘ 1 4104, -
o ’ iex a3
It follows that for the Hermite-Padé case with r =0 and k=r—s5= —s,
that
]lin} oLl —5.0,5,ub,_ /b, ,.,)=Blu). {1.18)

Moreover (see Lemma 2.1), we have as [ — oo,
bl .\‘u‘"‘b/f s+1= (iq-“a//‘al_*l)(l +U(l )) (119]
From (1.18) and (1.19), we deduce that

lim Q(f,!—s; 0,5 uhg*a,ja, )= Bu),

t-s> s
or

lim QU [—s5;0, s, ua,fa,, )= B(ul 'q ),

I— 7

which i1s just (1.16) and (1.15) with k= —=.

We have remarked that with assumptions (1.9) and (1.10), the coef-
ficients of the formal power series for f and g satisfy the same smoothness
condition, which implies that / and g have the same radius of convergence.
When |¢| > 1, f(z) and g(z) have zero radius of convergence, while when
lgl <1, f and g are entire functions of order zero. When |g|=1, fand g
may have zero, finite or infinite radius of convergence.

Unfortunately, the most common value of ¢ in (1.9) is ¢ = [; in this case
the asymptotic (1.11) is of little use. In addition, A defined in (1.10) may
have the value 1. However, with extra conditions on the coefficients of f
and g, we can extend the results of Theorem 1.1 to the case when ¢ is a
root of unity and/or A =1.
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TueoREM 12, Let f(z)=Y qa;z/ and g(z)=Y]_,b,z/ be formal

power series with a;b; #0 for j large enough. Let
gri=dy, 4,y ja7, (1.20)

and
Api=Abyfby D afa; ). (1.21hH)

Assume that g, and A, each have an asymptotic expansion in the following
sense: There exist complex numbers {¢;} 0, and {d,} [ _, with ¢,d, #0 and
there exist g and A, g4 #0, such that for each positive integer N,

N
q,=q<l+ Y el F+oll N)) as |- oo, (1.22)
k=1
and
N
2,2/1(1 + 3 d,\,l""-i—o(l"‘“")> as |- oo, {1.23)
k=1

Suppose that g is a root of unity and 1 is the smallest positive integer for
which ¢' = 1. Then if D= D(I, 1+ k; r, s) is defined by (1.6), we have that for
A#E L or, for A=1,

d, #wic, Sfor any integer w, (1.24)
then

lim DU, I+ k. 5)
= o <a;b}+/\; H;;Il (1 _q;)r*j H;;l] (1 _q;)v j)
XH_;:I Hfl:l (1 h)\'/ lq/;’+n¥>,)

Furthermore, the limit relation (1.6) remains valid.

=1. (1.25)

In Section 2, our main aim is the proof of Theorem 1.1. We precede this
proof by the statements and proofs of two subsidiary lemmas. Section 3
contains the proof of Theorem 1.2 in addition to statements and proofs of
relevant lemmas.

2. LEMMAS AND THE PROOF OF THEOREM 1.1

LemMa 2.1.  For any positive integer |, let

a a;_
/;Z__’i‘_ﬂ’q,‘ (2.1)
a4;
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and
P b, | 4
ul._‘ ‘r .
byiyia,,
Then
a a, \
I+ o0 | !
=441 Gra 1|\ ). >0,
a; a;_
and
a4y a; \
L S R
=4,y 4 2 9rvi41 . t<0
a, a;
Further,
b a
/4 - T 1 I+
—— =4 A yero A —, t>0,
bl fT+r1 1% +1-2 ] «,
and
b a
I+ ) - I+ 1
= A e A , t<0.
a,

b,

If. in addition, we have
hm ¢,=¢
I — s

lim 4, =/,

/=

and

then for any integer t,
Voap !
! — ql(l +1 1“‘2’
a,

. U,
lim { —%
i— s a,
and
llm é"l"+£ q““ ul+r = )M i ’.
I o b/ ‘\‘ (l,

-1

I /
dp, . jay= H Ay o1t/ m

m=0

Proof. For any positive integers / and ¢,

15

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.10)

(2.11)
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Now, from (2.1}, for m =0,

/ —
Aryms l/‘“l+m_ql+mal+m/a1+m -1

=qrem9rem VAipm \/al+m 2

= :q/#m(ll+m | "'qlalw‘/‘al [ (212)
It follows from (2.11) and (2.12) that for r >0,
ap JO4=qiqi0 ) e daglag ),

which proves (2.3). Next, for />0 and ¢ <0, we have

—1

al+l/aI: H al—m/al I (213)

n=1

From (2.1), for m>=1,

/ _
A i/ 1 =18y /[l/ -+ 2

==y —m+lqlf ne+ 2'”(11 g lu‘/“l' (214)
From (2.13) and (2.14), we deduce that for />0, <0,
“l+r/“l:‘1ffx’l‘11 5 oy oty fay)

which establishes (2.4). The limit (2.9) follows immediately from (2.7) and
(2.3) for t >0, while for ¢t <0, putting t = — s so that s >0, we have from
(2.4) that

_ s s 2 / E
A Ja=a; Ja=q; \q) 5 q colkaja )

Therefore, using (2.7), we obtain, with r= — s,
! 1
lim v f a4 =gt 12
I—ody { \dy_y
132
= q .

Hence (2.9) holds for all integers ¢, 1 # 0, while for r =0, the statement is
trivially true. To prove (2.5}, we observe that for /, 1 >0,

b/+!/b[: I—[ b[+m/b/+m— 1 (215)

m=1
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while. from (2.2), for m>1,

/ — 1 /
bl+m/’bl+m\ 1 ‘ll+m - ]al'+n|/al+ m—1- (216)

It follows from (2.15) and (2.16) that for /. 1 >0,

'
Il . i I b | i
bl+/¢"bl—il )’I+l'”/“/+1~l H Uy gy

m=1

-1 9 -1 s - i
=i, ), g day
This proves (2.5). Further, for />0 and 1 <0, we have

b/+lr“"bl = ]—I b/,, m/‘b/ nr4 1 (217)

m=1

Also, from (2.2), for m>1,
bl* m/bl— ml = ;‘I ~mal m/‘al¥m + 1 (218)

Therefore, from (2.17) and (2.18), for />0, 1 <0,

-1

- I}
b[+1;”bl’_ H '1[,”,(1/_,”/(’[, m+ 1

m=1

:’{/+/)-I+/+1 Ry g idy,

and we have shown that (2.6) holds. The limit (2.10) follows from (2.5),
(2.6), and (2.7). |}

LemMA 2.2, Let I, r and s be positive integers, | 2 s, and k any integer.
Let D =Dl 1+ k;r,s) be defined for r+5>0 by

i a4 di .y A posxi
dryy Aiyr-2 a;.
DL I+ k;r, ) :=det Al * ! . (2.19)
bk bris - R TS
Lbiekss v Proneya oo brok.r

while

DL I+k;0,0):=1. (2.20)
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We define

DU I+kr, = 1Y:=DU I+k;r—1,0), r=1, (2.21)

DL l+k; —1,8):=DLI1+k+1;0,5s—1), s= 1. (2.22)
Then, for r.s 20, r+s> 1, we have

DLi+kr,syD(UI+k—1;r—1,5—1)
=D I+k—1r—1,) DU, I+k;r,s—1)
—DU+ 1L 14+kr=1syDU -1 1+k—=1;r,5—1). (223)

Further, if Q(L1+k.r.s;z) is the polynomial defined by (18) and
DL I+kr,s), DULI+k;r,s—1) and DII—1,1+k-—1;r,s—1) are non-
zero, then

Ol l+kir,sic)=0QU I+krs—Lzy—zQU—-11+k—-1rs—1,2) X,
(2.24)

where

_D(l—l,/+k—l;r,s—1)D(1+l,l+k+1;r.s)

X = .
DiLI+kr,s—1)DU 1+ k;r s) (2.25)

Proof. Forrz1, sz 1, (2.23) follows from a spectal case of Sylvester’s
identity (cf. [ BaGr, p. 23]) which states the following: Let C be a kxk
matrix and let 1<p, g, mn<k Let C, (C,, ,, denote the matrix
obtained from C by deleting the mth row and pth column (respectively, the
mth and nth rows and pth and ¢th columns). Then

(det C)(det C; 4.y ) = (det C, ()(det Cy.) —(det C, ,Hdet Cpy). (2.26)

Applying the identity (2.26) to the (r+s)x(r+s) matrix of which
D, 1+ k; r, s) is the determinant, we obtain (2.23). It remains to show that
{2.23) holds for r =0, s =2 and for r = 2, s=0. First, for r =0, s = 2, the left
hand side of (2.23) is

DU I+k0,5) DU I+k—1;, —1,5—1)

=D{LI+k; 0,5y D I+k;0,5—2),
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by definition (2.22). The right hand side of (2.23) is

DL I+k, -, )DL I+k;0,5s—1)
-DU+ L I+k —1Ls)yDUI=1,1+k—1;0,5—1)
=D I+k0,s—1YDUI+k0,5~1)
—DU+ 1L I+k+1;0,s—1)DU—1,1+k—1,0,5—1),

by (2.22). Therefore, for r =0, s > 2, (2.23) holds since it is just the identity
(2.26) applied to the matnx of which D(/, ]+ k; 0, s) is the determinant.
Similarly, using (2.21), we can check that {2.23) holds for r =2 2, s =0.

In order to prove (2.24), let V(z)= V(! + k;r,s; Z) denote the polyno-
mial defined by

Vi I+ k&, r s o)

- ] - 2 wt s -—
drs a4, a; i r— 541
:=det a,,, A,y Ujy o » a, . (227)
brixin by brox -1 bk s s
L. bl+k+.\‘ bl+k+.\- -1 hl+k+,\' 2 bl+k -y -

Clearly, from (1.8) and (2.27), we have
Vibl+kir,s;oy=DWULI+kr,s) QUL T+ k;r, 5, 2). (2.28)
Applying the identity (2.26) to (2.27), we obtain for r 20, s = 1,

Vilbi+kir,s;2YDU T+ Kk r,s—1)
=Vl l+kr,s—1.2yDUT+k;r. s)
—zVU-VI1+k—=1,rns—1,2)DU+ 1, 1+k+1;r5) (229)

Dividing (2.29) by D(L, I+ k;r,s) DU, I+ k; r. s — 1) and using (2.28) yields
(2.24) and (2.25). |

We shall now prove Theorem 1.1 using induction on (r+4s), r. s€ N and
the recursion relation (2.23). An alternative proof of (a) that avoids induc-
tion and recursion has been pointed out by one of the referees. In brief out-
line, if one factors the first element of each row of D in (1.6), followed by
a suitable factoring of each column, one can show that D is asymptotically

630 83 2-3
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equal to some factors times the Vandermonde determinant of 1, l/g,
Vg .. 1/g" 1 Ag*, 2jgc* Y ., A/¢"** " and (1.11) can be deduced.

Proof of Theorem 1.1. (a) For r=0, s=0, (1.11) holds since
D(I,I+k;0, 0)=1. Further, from (1.6), we have

D 1+k;1,0)=aq, and DULI+ k0, 1)=b,,,,

so that (1.11) 1s true for r +s< 1. Now assume that (1.11) holds for all
non-negative integers r and s with » 4+ 5 <m. We shall prove that (1.11) is
true for (r+1,s) and (r, s+ 1) where r +s=m. From (2.23), we have

DULI+kr+ 1,y DULI+k—1r5—1)
=D(LI+k—-1,r,s) DU I+kr+1,5—1)

—DU+ 1, 1+k;r,s)DUI—11+k—1;r+1,5—1). (2.30)
Applying the inductive hypothesis to the determinants of the matrices of

order <m in (2.30), we obtain that for ¢ not a root of unity, 1 #1, lg#0,
as /- oo

y -1 r
Dil+kr+Ls)=a; b . [T(—¢V /[l (1=g/)y 1/
j=1

J=1

r+1 s -1
< [TA=a g1 [T a=atgm)
j=1 1

"n=

x (1 — ¥Y)1+o(1)), (2.31)

where

Y:=<al+l>r< bivi >’V (a,,, 1>r+] (b/+k r:)“l' (232)
a; L — a;

biik -

From (2.32), (2.9), and (2.10), we have as [ - «©
Y:q,< al >r <qkr (l/ )s <all>r+l
dy )u a; a;

s—1
X("k—_):;jal‘l> (l+()(1))
q a

!

=A"'g" Y1 +o(1)). (2.33)
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Therefore, from (2.33), as {— o0,

r r+1 vy—1
l—[(l_,{—l k+s -1~ j)l—[ n(l_i—lqk-ﬁ—n—j)(l_y)
Ji=1 Jj=1n=1
r+1 r+b s -1
(l_/~lk+\—1)n H 1_/]*1 k+n— j)l+()( ))
ji=1 J=1 n=1
+1
H ﬂ (1—27'¢* 7" )1 +o(1)). (2.34)

Substituting (2.34) into (2.31), we have as { — o0,

DU I+kir+1,s)=a;"'b;,, III ! H
i=1 j=1

K

X-H H (1 =47 1g* "= (1 +o(1)),

which establishes (1.11) for (r + 1, s). A similar calculation yields (1.11) for
(r, s+ 1). Therefore, by induction, (1.11) holds for all non-negative integers
r and s, and we have completed the proof of (a).

{(b) We again use induction to prove (1.15). First, from (1.13) with
r=0, we have (with s =0),

Wooxlu)= Bo(u) =1, (2.35)

by (1.12), so that (1.15) holds for s =0. Also, from (1.14), for any fixed
integer k and r =0, we have (with s=1)

Wo )= Wy odu)—ud "¢*Woolug " )=1—ui""¢*, (2.36)
by (2.35). Further, from (1.12),
By(ws "¢y =1—ul"'g", (2.37)

so that (2.36) and (2.37) establish (1.15) for s=1. Assume as an inductive
hypothesis that (1.15) holds for all integers s<m—1, meN. Then by
(1.14) with s =m,

Womidt)=Wo i) —ud "¢ 7 "Wy g ")
-1k nt—

:Bm——l(u/%" (] ) ll/i q q ]Bm——l(u'{llqkqfl)
=B, (ui"'q"),
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where we have used the inductive hypothesis and (1.12). Therefore (1.15)
holds for s =m and by induction, we have proved (1.15) for all s 20 and
any fixed ke Z.

In order to prove (1.16), we use (2.24) and (2.25) together with (1.11).
From (2.25) and (1.11) we have as / - o,

X=<al 1“/+1>r <bl+k -y lb/+k—r+|>“ : (bl+k —r+l> (1+0(1)). (238)

2 2
a4 biik » biyk s

Now, from (2.9) and (2.10), for any fixed integers k and r,

im b1y I';’lb/-#k 21 _ lim a4, 1‘7’/+| =q. (2.39)
I bivi-. e
and
by .
R R (2.40)
1~ b, f— oty
Therefore, from (2.38), (2.39), and (2.40), we obtain as /| —» o«
X=gq'q" "4 ¢ " Na,fa,_ N1 +o(1))
=271 " ayja, O +o(1), (2.41)

Substituting for X from (2.41) into (2.24) yields as /— oo,
Ol l+kir.s;oy=0L1+kr,s—1;,2)—zA 9" a,ja, |
xQU—1LI+k—1;rs—12)(1+0(1)). (242)

Putting = =ua,/a,, | in (2.42) and observing that then za,/a, | =uq, "', we
obtain as / - oo,
oL+ k;r, s uaja; )
=QU I+k;r,s—1 ua,la,, )
— A QU - L+ k— L s — 1 g tuagfa; (4 o(1)).
(2.43)

Armed with (2.43), we now prove (1.16) by induction on (r+s). From
definition (1.8).

QUL I+k;0,0ua;/a,, )=1. (2.44)
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Also from (1.8), with r=1, s=0, we have

] ] j
Q(l’l+k’ 1,0;ua,/a,+l)=;det[ ua/'a/+1:|
!

ay a,

1
=—{a;,—ua;))=1—u. (2.45)
a

On the other hand, from (1.8) with r =0, s=1,
OULT+k;0, 1, ua,/a,, )

_ 1 det[ 1 ua,/’a,ﬂ}

bk bk brik
oy Y Pk
vy by
=1—u<~—a'->/1'(]“'(-[1'—){1%-0(1)) as [ oo,
dyq a;

where we have used (2.9) and (2.10). Therefore,
lim QUL 1+k;0, Liua,ja;, ) =1—4 "¢*u
{— =
=Wy i lul (2.46)

by (2.36). Therefore, we see from (2.44), (2.45) and (2.46) that (1.16) holds
for r, s 20, r+s< 1. Assume as an inductive hypothesis that (1.16) holds
for all non-negative integers r and s with r +s<m — 1, meN. Then, with
r+s=mni, we have from (2.43) and the inductive hypothesis that with k a
fixed integer, as / — o,

QUL I+ kv, ssuaja;, )
=W, )y +olly—72 g uW, o ug Y +oll)

=W, (u)+o(l),

by the recurrence relation (1.14). Therefore, (1.16) is true for r 4+ s = m and
therefore by induction, we have proved (1.16) for all non-negative integers
r, s and k fixed, k € Z. Observe that {1.16) holds uniformly for » in compact
subsets of C, since gi#0. }
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3. AsYMPTOTICS WHEN ¢ Is A RoOoT oF UNITY AND/OR A =1

We introduce an analogue for asymptotic series of the O, o, notation (cf.
[Lu, p. 310]). Given non-negative integers S and 7 with $< 7, and given
a sequence of complex numbers {¢;} -, we write

e, =A,[5T] (3.1

if and only if there exist Cg, Cy, |, ..., Cr-€ C with

.
e= 3y Cul 4ol 7 as - 0. (3.2)

k=S
Lemma 3.1.  Let I be a positive integer and let

qri=dpap o /ai, (3.3)

Api=(bb, D aja; ). (3.4)

Assume that ¢, and A, each have a complete asymptotic expansion in the
sense that there exist complex numbers {c,.} 7_ . {di} 7o\ with

cd, #0, (3.5)

and there exist g and A, gA#0, such that for each positive integer N,

N
(],:q<l+ Y el Kol N)> as 11— oo, (3.6)
k=1
and

N
l,:i(l + Z d. 1 *+o(l N)> as 11— oo, (3.7)

k=1

With the notation in (3.1) and (3.2), and N an arbitrary positive integer =3,
we have the following:

(a) For any integer ¢,
g =q (1 +A4,[2; N]) as |- oo, (3.8)
and
Aie =41 +A4,[2;N]) as [ — wo. (3.9)
(b) For any fixed positive integer j,

1—q]#0  for | sufficiently large, (3.10)
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and

(1—g/, )/ —gH=1+4,[1;N], - (3.11)
(c) For any integer t with
te,—d, #0, {3.12)
we have

14, g1 #0 Jor | sufficiently lurge, (3.13)

and
(=7 i (=2 g =1+ A[LLN], - (3.14)

Proof. (a) From (3.6) we have as [ — o, te Z fixed,

Cq

L SR +0(1+1)N>
I+t (I+1) I+~

- afy_t o Cxfy_ N N
_q[l+l<l AL >+ . +IN<1 1+-->+0(/ )}

=q<1+(—}+ +%+A,[2; N])

=q,(1 +A,[2;N]).

q/+l=q<] +

which proves (3.8). The proof of (3.9) follows the same procedure.
{(b) For any fixed positive integer j, we have by (3.6), as [— oo,

q-/=f1’<l+i‘}+A,[2; N]>- (3.15)

Therefore,
1 —g]=1—q'—q'je I+ 4,[2: N], (3.16)

which is non-zero even when ¢/ =1 since ¢, #0 by (3.5). This establishes
{3.10). Also. from (3.6), as I — o0,
Jjey | Je

J =t 1
q; (1<1+[+/2

+A4,[3; N]>,

) ) Jje jes
q{il=q”(l +1il1 +Uil)z+A/+1[3; N]>~
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Therefore, as [ — oo,

) , ‘ 1 1 1 1
F gl it e [ Z . =t N
41— 47, qj[“([ /i—l>+('<l'+(/il)‘>+A'[3 ]}
Iy,
:i<"/fj‘>(1+A,[1;N_2]>. (3.17)
Also, from (3.16),
(I—g)(1+A4,[1,N]) for ¢’'#1,
l—¢g/= . A8
4 %(—jc,/’l}(l—#A,[l;N'l]) for ¢/=1 (3.18)
Now
(L=qf{ V(=g =1+ (q] —qi ) —g)). (3.19)
From (3.17) and (3.18) it follows that
4 . A,[2;N'], if g/#1
d gl fl_ 5y =
(g1 (//il)/( q7) {A/[I;N”]. it (]’/=l, (3.20)

where N', N” depend on V. Since N is arbitrary, (3.11) follows immediately
from (3.19) and (3.20).

(¢} Forany reZ, by (3.6) and (3.7), we have as / — oc,

te,

{
Aitgh=1 "q’(l —f[—‘+ A2 N]Xl AL N]>

te, —d,

{

=) 'q’(l-{- +A,[2 N]). (3.21)

Therefore, as I — oo,

pEEER U PPN
12, 'qi=1 ~,1"q'—"—ig[3—’~--—d‘—)+/1,[2; N1, (3.22)

and (3.13) follows even when A !¢’ =1, since t¢, —d, #0 by (3.12). Next,

=220 (=471
=1+ =40 g DI =47 q)). (3.23)
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From (3.21), as [ — oo,

. - . L1
A=Al =4 1(]’[(11 (7:ﬁ_7>+f"| <7_m>+/“/[3§ N]J

At
=<§i—"7(z"a'—d'l>(1+A,[1;N]). (3.24)

Also, from (3.22), as [ — oc,

(1—=A "Y1+ A[L;N]D for A T¢g"#1,

1—i qi= W —d 3.25
rd —“i[—"—’mA,[l;N]) for A '¢g'=1. (3-23)
From (3.24) and (3.25) we deduce that as [ — oo,
(ft,‘q;—i-,i‘lq;m:{Altz;N] if 27 'q" 1, (326)
(1—4,"¢) A1, N] if A7 lg'=1, ’

and (3.14) follows from (3.23) and (3.26).

Proof of Theorem 1.2. We use induction on (r + ), recalling that r and
s are non-negative integers. From the definition (1.6) of D(/, I+ k; r, 5), we
see that D(LI1+k0,00=1; D(LI+k 1,0)=a,;; DU I1+k0,1)=b, .
Therefore, (1.25) holds for all non-negative integers r and s with r+s < L.
Assume as an inductive hypothesis that for all non-negative integers r and
swith r+s<m—1, m>1, and for an arbitrary NeN, as /| — o,

r—1 KR
Dl l+kirosy=ayby,, T (0=q)y 7/ 1] (0 —g)

ji=1 j=1

< T1 T1 (h=4; g5 NI+ A1 ND. (327

j=t n=1

Suppose now that r +s=m — 1. Using the identity (2.23) together with the
inductive hypothesis (3.26), a straightforward calculation yields, as / — oc,

r PO |
DU l+kir+Ls)y=a;""'by o . [T =g+ 7T (1=q)

J=1 J=1
r » r+1 s—1 ‘
XH (l_il‘lq;cf\-a/fl)n n (]_A"’I'lq;\’-f'll—j)
/=1 j=1n=1

(L =Z1+A,{1;N]), (3.28)
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Z:<al+l>r (W\)Hl <b1+k~ r2>l\.] (_bl+k r >‘\‘
a; a, brik. v brik o
L ‘<l—q/+1>"""n'<1—qf+1>"'f
=i\ 1—gf i\ T—gq]
|

. T NS NG
I ey

it l"‘ll 1 k+n G 1~(1/

xﬁ(l }1+l|qll‘:x\ Jl> ]—12<1_‘111>"'411

j=1 1—'{/ lql/(%i/ ! =1 l—qu

(LA

N 3.29)
./1;11 HI:II<I»AI lq;\-*'" j> (

Observe that the division evident in (3.28) and (3.29) is justified because of
(3.10) and (3.13). Now, by (2.3), (2.4), (2.5), and (2.6), we have

r r+1 s— 1 &
<al+l> <0171> (bl+k1r2> ( brik_, )
a; a briw v byiw vy

}‘I+k N 1

- r By
=49« f,-,1‘1/"‘f1/+k7r7:‘—“—’“2 Ak rt
{4k-—r—1

=4, g 1+ 4,[2; N1 (3.30)

where we have used (3.8), (3.9) and the fact that (1 +A4,[2; N])'=
1 + 4,[2; N]. Furthermore, each of the remaining terms in the product on
the right hand side of (3.29) is of the form 1+ A4,[1; N], by (3.11) and
(3.14). Then from (3.29), (3.30) and the previous remark, we deduce that

Z=i"g} "1+ A[1;N]) as - o (3.31)

It follows from (3.28) and (3.31) that as / — oo,

DL I+kr+1,s5)=a,*"b}, . , | ]_[ (1—giHrt H 1—qf)y

J=1 =

B

vl
x [T T1 (1=4;7"gk " )1+ 4,[1; N]). (3.32)
Jj=1

A similar calculation shows that D(L/+k;r,s+1) has a complete
asymptotic expansion of the required form and therefore by induction we
have proved (1.25) for all r,s20 and keZ. Finally, the limit relation
(1.16) follows from (1.25) and the proof of (1.16) in Theorem 1.1(b). |
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